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ABSTRACT 

There is increasing interest in automatic recognition by gait 
given its unique capability to recognize people at a dis-
tance when other biometrics are obscured. Application do-
mains are those of any noninvasive biometric, but with par-
ticular advantage in surveillance scenarios. Its recognition 
capability is supported by studies in other domains such as 
medicine (biomechanics), mathematics and psychology 
which also suggest that gait is unique. Further, examples of 
recognition by gait can be found in literature, with early 
reference by Shakespeare concerning recognition by the way 
people walk. Many of the current approaches confirm the 
early results that suggested gait could be used for identifica-
tion, and now on much larger databases. This has been espe-
cially influenced by DARPA’s Human ID at a Distance re-
search program with its wide scenario of data and ap-
proaches. Gait has benefited from the developments in other 
biometrics and has led to new insight particularly in view of 
covariates. Equally, gait-recognition approaches concern 
extraction and description of moving articulated shapes and 
this has wider implications than just in biometrics. 

1. BIOMETRICS AND GAIT 

A unique advantage of gait as a biometric is that it offers 
potential for recognition at a distance or at low resolution, 
when other biometrics might not be perceivable[1]. Further, 
it is difficult to disguise gait without hampering progress, 
which is of particular interest in scene of crime analysis. 
Recognition can be based on the (static) human shape as 
well as on movement, suggesting a richer recognition cue. 
Further, gait can be used when other biometrics are obscured 
– criminal intent might motivate concealment of the face, 
but it is difficult to conceal and/or disguise motion as this 
generally impedes movement. 

There is much evidence to support the notion of using 
gait to recognise people. Shakespeare made several refer-
ences to the individuality of gait, e.g.: “For that John Morti-
mer….in face, in gait in speech he doth resemble” (Henry 
IV/II). The biomechanics literature makes similar observa-
tions: “A given person will perform his or her walking pat-
tern in a fairly repeatable and characteristic way, sufficiently 
unique that it is possible to recognize a person at a distance 
by their gait” [2] 

Early medical studies [3] established many of the basic 
tenets of gait analysis. These studies again suggested that gait 
appeared unique to subjects. Studies in psychology have pro-

gressed from establishing how humans can recognise sub-
jects’ motion [4], to recognising friends. Early approaches 
used marker-based technology, but a later one used video 
imagery [ ], also showing discrimination ability in poor il-
lumination conditions. As such there is much support for the 
notion of gait as a biometric.  
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We shall describe next some of the approaches to auto-
matic recognition by gait, and then describe the gait part of 
DARPA’s Human ID at a Distance program before considera-
tions for future research and conclusions. 

 

 

(a) Video Data (b) Silhouette (c) Feature space 
Figure 1: Gait Recognition by Silhouette Analysis 

2. APPROACHES TO GAIT BIOMETRICS 

2.1 Early Approaches 
The earliest approaches concerned recognition within small 
populations, with the volume of data limited largely by the 
computational performance available then. As illustrated by 
Fig. 1, many sought to derive a human silhouette from an 
image, and as common in pattern recognition, then seek to 
derive a description which can be associated with the identity 
of the subject. In what was perhaps the earliest approach to 
automatic recognition by gait, the gait signature was derived 
from the spatio-temporal pattern of a walking person[6]. 
Here, in the XT dimensions (translation and time), the mo-
tions of the head and of the legs have different patterns. 
These patterns were processed to determine the body mo-
tion’s bounding contours and then a five stick model was 
fitted. The gait signature was derived by normalising the fit-
ted model for velocity and then by using linear interpolation 
to derive normalised gait vectors. This was then applied to a 
database of 26 sequences of five different subjects, taken at 
different times during the day. Depending on the values used 
for the weighting factors in a Euclidean distance metric, the 
correct classification rate varied from nearly 60% to just over 
80%, a promising start indeed. 

Later, optical flow was used to derive a gait signature[7, 
8]. This did not aim to use a model of a human walking, but 
more to describe features of an optical flow distribution. The 
optical flow was filtered to produce a set of moving points 
together with their flow values. The geometry of the set of 
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points was then measured using a set of basic measures and 
further information was derived from the flow information. 
Then, the periodic structure of the sequence was analysed to 
show several irregularities in the phase differences; measures 
including the difference in phase between the centroid’s ver-
tical component and the phase of the weighted points were 
used to derive a gait signature. Experimentation on a limited 
database showed how people could be discriminated with 
these measures, appearing to classify all subjects correctly. 

Another approach was aimed more at generic object-
motion characterisation[9], using gait as an exemplar of their 
approach. The approach was similar in function to spatio-
temporal image correlation, but used the parametric eigen-
space approach to reduce computational requirement and to 
increase robustness. The approach first derived body silhou-
ettes by subtracting adjacent images. Then, the images were 
projected into eigenspace, and eigenvalue decomposition was 
then performed where the order of the eigenvectors corre-
sponds to frequency content. Recognition from a database of 
10 sequences of seven subjects showed classification rates of 
100% for 16 eigenvectors and 88% for eight, compared with 
100% for the (more computationally demanding) spatio-
temporal correlation approach. Further, the approach appears 
robust to noise in the input images. This was later extended 
to include Canonical Analysis (CA) with better discrimina-
tory capability[10]. 

In the only early model-based approach, the gait signa-
ture was derived from the spectra of measurements of the 
variation in the thigh’s orientation[11,12]. This was demon-
strated to achieve a recognition rate of 90% on a database of 
10 subjects, illustrated in Fig. 2(a). 

  
(a) Early (b) Recent 

Figure 2: Model Based Recognition 

2.2 Recent Approaches 
Of the current approaches, most are based on analysis of 

silhouettes, including: the University of Maryland’s (UM’s) 
deployment of hidden Markov models [13] and eigenanalysis 
[14]; the National Institute for Standards in Technology / 
University of South Florida’s (NIST/USF’s) baseline ap-
proach matching silhouettes [15]; Georgia Institute of Tech-
nology’s (GT’s) data derivation of stride pattern [16]; Carne-
gie Mellon University’s (CMU’s) use of key frame analysis 
for sequence matching [17]; Southampton‘s newer ap-
proaches that range from a baseline-type approach by meas-
uring area [18], to extension of technique for object descrip-
tion including symmetry [19] and statistical moments [20]; 
Massachusetts Institute of Technology’s (MIT’s) ellipsoidal 
fits [21]; Curtin’s use of Point Distribution Models [22]; the 
Chinese Academy of Science’s eigenspace transformation of 
an unwrapped human silhouette [23]; and Riverside’s use of 
kinematic and stationary features [24]. These show promise 

for approaches that impose low computational and storage 
cost, together with deployment and development of new 
computer vision techniques for sequence-based analysis. 
Further, the early model-based technique has been extended 
to include full limb movement [25] and show how a model-
based approach can facilitate greater application capabilities, 
including analysis of running, as in Fig. 2(b). 

  
(a) UCSD (b) Southampton 

Figure 3: Early Gait Data 

2.3 Available Data 
Early approaches used relatively small databases. This was 
largely enforced by limited computational and storage re-
quirements at that time. It has been very encouraging to note 
that similar levels of discrimination can be achieved on the 
much larger datasets now available. Naturally, the success 
and evolution of a new application relies largely on the data-
set used for evaluation. Accordingly, it is encouraging to 
note the rich variety of data that has been collected. These 
include: UM’s surveillance data [13]; NIST/ USF’s outdoor 
data, imaging subjects at a distance [26]; GT’s data com-
bines marker based motion analysis with video imagery 
[16]; CMU’s multi-view indoor data [27]; and University of 
Southampton’s data [28] which combines ground truth in-
door data (processed by broadcast techniques) with video of 
the same subjects walking in an outdoor scenario (for com-
puter vision analysis). 

  
(a) Maryland (b) CMU silhouette 

Figure 4: Recent Gait Data 

As gait is a partially behavioural biometric there is much 
potential for within-subject variation. This includes footwear 
and apparel. Application factors concern deployment via 
computer vision though none of the early databases allowed 
facility for such consideration, save for striped trousers in an 
early Southampton database (aiming to allow for assessment 
of validity of a model-based approach), as shown in Figure 2. 
The new databases seek to include more subjects so as to 
allow for an estimate of inter-subject variation, together with 
a limited estimate of intra-subject variation thus allowing for 
better assessment of the potential for gait as a biometric. Ex-
amples of Maryland’s outdoor surveillance view data and a 
silhouette derived from CMU’s treadmill data are given in 
Fig. 4(a) and (b), respectively. 
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3. HUMAN ID AT A DISTANCE 

The Defense Advanced Research Projects Agency’s 
(DARPA’s) Human ID at a Distance research programme 
embraced three main areas: face; gait and new technologies. 
Gait is a natural contender for this aim, given its unique ca-
pabilities. The DARPA gait programme concentrated on 
three main areas: new technique; new data; and evaluation, 
essentially taking gait from laboratory-based studies on 
small populations to large scale populations of real world 
data. Of the current approaches, those from MIT, Maryland, 
Southampton, GaTech, CMU, USF and NIST were origi-
nally associated with Human ID at a Distance. 

 

 
Figure 5: Gait Challenge Data 

The data was described earlier and was developed espe-
cially for purposes of evaluation. The data is freely available 
for evaluation and it is very encouraging to see how research 
in gait has benefited from research in other biometrics: there 
is a range of scenarios, covariate and ground truth data al-
ready available. 

 Viewpoint Shoe 
Maryland [36] 79 86 
Carnegie Mellon [33] 98 90 
MIT [34] 96 88 
Southampton 93 88 
USF [15] 87 76 
Table 1: Example Gait Challenge Results 

The gait challenge analysis [26] concerned evaluation 
on a set of baseline data, Fig. 5, which evaluated the effects 
of different covariates in (challenging) real world data. Rec-
ognition rates similar to those on other data have been re-
ported, some of the example rates here are early [15, 32, 33, 
36] with better results later. Some of the peak classification 
rates of the evaluations are given in Table 1. 

4. FUTURE WORK 

Currently, the studies on gait as a biometric are considering 
innate performance factors, practical performance factors 
and wider deployment. The innate performance factors con-
cern the effect of covariates on recognition performance, but 
with deeper analysis to determine data pertinent to recogni-
tion with a view to refining technique development. The 
practical performance factors concern the intrinsic effects, 
such as the consequences of speed and load, and extrinsic 
effects which especially include variation in viewpoint. 
There is natural means to handle difficulty in image acquisi-
tion by using infrared [42], and some of the recent develop-

ments in radar might also be used to good effect. There is 
also much current interest in multiple biometrics and gait 
can be deployed for purposes of enrolment and for fusion 
[43,44]. Given that the biometric approaches essentially 
concern extraction and description of gait by markerless 
means, there is wider deployment capability. Though it 
would doubtless require an alternative focus, there is interest 
in markerless gait analysis for medical purposes [45,46] as 
whilst being much more convenient it will also benefit 
analysis of children and the elderly. Further, there is oppor-
tunity for greater realism in animation, though this will 
doubtless require more sophisticated modelling strategies. In 
general, gait concerns the extraction and description of mov-
ing articulated objects, making it an excellent vehicle for 
technique development in the rapidly expanding research in 
spatio-temporal  pattern analysis. 

5. CONCLUSIONS 

Gait recognition has come a long way in a short time: from 
early approaches on limited datasets, recognition has pro-
gressed to large real-world databases with analysis of co-
variate factors. In this it has benefited from the increasing 
studies in biometrics, addressing factors of practical signifi-
cance in eventual deployment. The success is very encour-
aging: most techniques report similar performance on labo-
ratory and on real-world data. There are natural public con-
cerns over identity and surveillance technology, but there is 
now demonstrated capability to recognise identity when 
conventional biometrics cannot be deployed. This is a 
unique capability which will prove an asset to biometric 
systems. Further, the technology has generic interest in the 
analysis and description of moving articulated bodies, as 
well as wider application in markerless gait analysis which 
could prove beneficial for future developments in film, 
healthcare and socialcare arenas. 
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