Keystroke dynamics

Jarmo Tlonen!

Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta,
Finland,

ilonen@lut.fi

Abstract. This article is an introduction to keystroke dynamics. Key-
stroke dynamics is a biometric which is based on assumption that people
type in uniquely characteristic manners. Keystroke dynamics is mainly
used for verification, but also identification is possible. Also commercial
products exist. Additionally, keystroke dynamics can be used to eaves-
drop secure communications by guessing what was written based on tim-
ings between letters.

1 Introduction

Keystroke dynamics is a biometric based on assumption that different people
type in uniquely characteristic manners. Observation of telegraph operators in
the 19th century revealed personally distinctive patterns when keying messages
over telegraph lines, and telegraph operators could recognize each other based on
only their keying dynamics. Conceptually closest correspondence among biomet-
ric identification systems is signature recognition. In both signature recognition
and keystroke dynamics the person is identified by their writing dynamics which
are assumed to be unique to a large degree among different people. Keystroke
dynamics is known with a few different names: keyboard dynamics, keystroke
analysis, typing biometrics and typing rhythms. [1, 2]

Access to computer systems is usually controlled by user accounts with user-
names and passwords. Such scheme has little security if the information falls to
wrong hands. Key cards or biometric systems, for example fingerprints, can be
used to strengthen security, but they require quite expensive additional hard-
ware. On the other hand keystroke dynamics can be used without any additional
hardware. Also, the user acceptance of a keystroke dynamics biometric system
is very high, since users do not necessarily even notice that such system is used.

Keystroke dynamics is mostly applicable to verification, but also identifica-
tion is possible. In verification it is known who the user is supposed to be and the
biometric system should verify if the user is who he claims to be. In identification,
the biometric system should identify the user without any additional knowledge,
using only keystroke dynamics. Most applications of keystroke dynamics are in
field of verification.

Specifics of keystroke dynamics and features used with keystroke dynamics
are presented in Section 2. Keystroke dynamics methods and applications used

for verifying and identifying users are presented in Section 3. Darker side of com-
puter security — cracking passwords and eavesdropping secure communications —
has also its uses for keystroke dynamics. By detecting timings of keystrokes from
a secure communication channel and knowing keystroke dynamics profile of the
user it may be possible to sniff passwords or other text that the user writes. This
topic is presented with an example in Section 4.

2 Features used with keystroke dynamics

Keystroke dynamics include several different measurements which can be de-
tected when the user presses keys in the keyboard. Possible measurements in-
clude:

— Latency between consecutive keystrokes.

— Duration of the keystroke, hold-time.

— Overall typing speed.

— Frequency of errors (how often the user has to use backspace).

— The habit of using additional keys in the keyboard, for example writing
numbers with the numpad.

— In what order does the user press keys when writing capital letters, is shift
or the letter key released first.

— The force used when hitting keys while typing (requires a special keyboard).

Statistics can be either global, i.e, combined for all keys, or they can be gath-
ered for every key or keystroke separately. Systems do not necessarily employ all
of these features. Most of the applications measure only latencies between consec-
utive keystrokes or durations of keystrokes. In Figure 1 is an example of writing
word “password” several times and measuring latencies between keystrokes. Tim-
ings have been measured for three different persons. There are clear differences
in latencies and their standard deviations.

Fig. 1. Latencies between keystrokes when writing word “password” by three different
persons. The word was written several times. The lines represent average latencies,
errorbars represent standard deviations.

Latencies between keystrokes and durations of keystrokes are popular mea-
surements because they can be easily measured with normal PC hardware. Both

key press and release events generate hardware interrupts. Gathering keystroke
dynamics data has, however, few complications. Several keys can be pressed at
the same time — the user presses the next key before releasing the previous one
— and it happens quite often when writing fast. Depending on what is measured,
there might even be negative time between releasing a key and pressing the
next. It also adds slightly to complexity of the keystroke dynamics system if it is
wanted to know when the user presses SHIFT, ALT and other special keys. [3]

Another challenge is that there is a very wide variety of typing skills, and
the biometric systems should work for all users. First of all, the speed of typing
can be wildly different between diffent users. An experienced touch-typist writes
easily several tens of times faster than a beginner using “hunt-and-peck” style
with one finger. Also the predictability of a fast writer is much greater — there
is no need to stop and think where some letter is located on the keyboard. The
typing can also be affected if the user is on a lower level of alertness, for example
sleepy or ill. Users will additionally sometimes have accidents and consequently
write in an ab-normal fashion for a few weeks when a finger is bandaged, or type
with one hand when holding a coffee cup in other hand, and so on. Changing
keyboard to a different model or using a laptop computer instead of a normal
PC can also affect keystroke dynamics tremendously. All these factors have to
be taken into account when designing a keystroke dynamics system.

3 User verification and identification

Keystroke dynamics systems can be used for both verification and identification.
They have clearly different applications:

1. Verification: Identity of the user is verified usually at log-in time by mea-
suring the typing pattern when writing the username and the password and
comparing measurements to a previously stored profile.

2. Identification: A larger amount of keystroke dynamics data is collected, and
the user of the computer is identified based on previously collected informa-
tion of keystroke dynamics profiles of all users.

Verification has more directly applicable uses with keyboard dynamics than
identification and it is a far more studied subject.

Goodness of a biometric system is determined by type I and type II error
rates. Type I error means rejection of a valid user and type II error means an
acceptance of an invalid user. In the first case a valid user gets annoyed because
he could not log into the system. In the second case a user without proper
authorization (an attacker) could log into the system. Both error rates should
be optimally 0%. There is a balance between the two error types. If one kind of
error is made lower by tuning parameters of a method, the other usually gets
higher. For example, if all users are accepted — the biometric authorization is
basically turned of — type I error will be 0% but type II error will be very high
since every user is accepted. From a security point of view type II errors should
be minimized — no chance for an illegal user to log in. However, type I errors

should also be infrequent because valid users get annoyed if the system makes
their lives harder.

Both verification and identification methods are presented in following sec-
tions together with few examples from previous studies. A brief introduction to
a commercial system, BioPassword, is also included.

3.1 Verification

Access to computer systems in mainly controlled by user accounts: usernames
and passwords. If someone knows a username together with the password, one
can access the computer system. Passwords are often quite easy to guess. They
may have some direct connection to the person the account belongs to (birthday,
name of a family member or pet, and so on), they may be normal dictionary
words which are easily guessed by trying all of them, or the password might
actually be written on a post-it note attached to somewhere near the computer.
So, there is a clear need for strengthening the password based authentication.
Keystroke dynamics is a sensible choice because a normal username/password
scheme can be easily extended to use also keystroke dynamics and there is no
need for additional hardware. [1]

Using keystroke dynamics as an addition to normal password based authen-
tication is quite straighforward. When the password is changed (or created the
first time), following steps are followed:

1. The new password is written by the user several times.

2. A profile of keystroke dynamics is created, for example by measuring la-
tencies between consecutive keypresses and calculating their averages and
standard deviations.

3. The profile is stored as an addition to the encrypted password.

The user has to write anyway the new password several times, usually twice,
when changing it, so the password changing procedure is not changed much.
Two times might not be enough for creating a usable profile, but a few more
repetitions might be needed. Example of a profile was presented earlier in Fig-
ure 1. There are no user-visible changes in the authentication procedure, even
though internally the procedure has a few more steps which are illustrated in
Figure 2. Basically keystroke dynamics are measured when the password is writ-
ten and measurements are compared to the formerly created profile. The system
can additionally do similar checks when writing the username.

There have been a lot of studies on using keystroke dynamics for user verifi-
cation [1,4-7]. Most studies have used durations between keystrokes as features
for user verification, but some have also used keystroke durations (the time a
key is held down). All studies use two stages: 1) learning users keystroke dy-
namics (enrollment), and 2) comparing new data to the profile collected in stage
1. Stage 1 consists of writing the username and password several times, though
sometimes only usernames are used, and forming a profile. The type of profile
depends on the used classification method. Used classification methods include
traditional statistic techniques, Bayesian classifiers, neural networks and fuzzy
systems.

Ask username

Ask password

Create measurement vector

Valid username?

Valid password?

Verification analysis

User verified?

Access granted

Fig. 2. Authentication. Dotted areas are added to the normal authentication proce-
dure.

“Computer-access security systems using keystroke dynamics” by S.
Bleha et al. [4] is one of the most referenced studies on keystroke dynamics is. In
this study users only had a username, there was no separate password. The valid-
ity of the user was decided solely based on how they wrote their usernames, kind
of using the username as the signature of the user. Latencies between keystrokes
were used as features. Thirty latest valid username entries were used as reference
pattern when deciding if the user is valid. Two different classification methods
were used: minimum distance classifier and Bayesian classifier.
The normalized minimum distance classifier used for verification was
(X —mi)" (X —m,)

D; = . 1)
X[{lrms |

And the normalized Bayesian classifier was
(X — mi)t C;l (X — ml) (2)
[X[{rm]|

In both equations the participant is claiming to be user ¢, X is the test vector
(latencies between keystrokes), m; is the average of previous attempts for the

di =

user and C; is the covariance matrix. The normalization is done to accommodate
for differences in password lengths. There is a defined threshold for deciding
whether the user is accepted or not. Thresholds are different for both classifiers.
Threshold of 0.030 was used for the minimum distance classifier and 0.000030 for
the Bayesian classifier. If the user was not accepted with the first trial the second
trial was given with reduced thresholds, 0.0029 and 0.000029 respectively. Both
classifiers are used together to decide if the user is valid. The user is rejected
only when both classifier thresholds are exceeded. In the experiments there were
10 valid users and 22 individuals tested the system as invalid users. The invalid
users had a chance to observe valid users so they could try to imitate their
writing styles. The results are presented in Table 1. 23 out of the 44 rejections of
valid users were caused by two participants who were not used to PC keyboards,
and did not use them other than during tests. 15 out of the 22 acceptances of
invalid users were for a slow two-finger typist whose writing style was easy for
others to imitate.

Table 1. Results for user verification. [4]

Rejection of valid users|Acceptance of invalid users

(Type I error) (Type II error)
Total attempts 539 768
Errors 44 22
% error 8.1% 2.8%

“Verification of computer users using keystroke dynamics” by M. S.
Obaidat and B. Sadoun [1] is a comprehensive study of different classification
methods that can be used with keystroke dynamics. Both latencies between
keystrokes and keystroke durations were used as features with numerous dif-
ferent statistical and neural classification methods. It was noted that keystrore
durations gave better results than latencies between keystrokes, but using both
measurements together gave the best results. There were 15 valid users and 15
invalid users who tried to get access to all of valid accounts. Results for different
methods are presented in Figure 3 when both keystroke durations and latencies
between keystrokes have been used. Best results, 0% of both type I and type 1T
errors, were achieved with following neural methods: Fuzzy ARTMAP (a gen-
eralization of adaptive resonance theory networks (ART) with fuzzy set theory
operations), RBFN (Radial Basis Function Network) and LVQ (Learning Vec-
tor Quantization). Best results with statistical methods were achieved with the
potential function and the Bayes rule, though many of the neural methods gave
better results.

M Type | Error

O Type Il Error

% Misclassification Error
% Misclassifcation Results

K-Means Cosine Min. Bayes' Pot. o I o &
Measure Distance Rule Func. 3 & g E 3 5] 2
2 8 g 2
o

a ¥

H

E]

2

(a) (b)

Fig. 3. User verification results for (a) statistical and (b) neural methods when both
latencies between keystrokes and key hold-times have been used. Note that the scales
are different. [1]

3.2 Identification

In case of keystroke dynamics identification means that the user has to be iden-
tified without additional information besides measuring his keystroke dynamics.
A short predefined text could be used for identification, i.e., profiles of all the
users typing a certain text are stored and later the user is identified when the
same text is written again. However, this kind of indentification would not offer
any advantages over a verification system where all the users write different text
(username and password). The user has to write some predefined text to be iden-
tified, so why not use different texts known only for individual users (passwords)
and change harder identification task to a more straightforward verification task?

So, identification in this case is mainly useful for constant monitoring. Iden-
tification with keystroke dynamics is implemented by using a background task
for collecting keystroke dynamics profile of the user’s typing. Such system is not
limited by short texts, but on the other hand there is no possibility of using only
some predefined texts for identification. Thus, more general keyboad dynamics
statistics have to be gathered. For example latencies between keys in all different
key-pairs can be gathered — what is the average latency between A and B when
the user writes AB and so on for all key-pairs.

“Continuous authentication by analysis of keyboard typing character-
istics” by S.J. Shepherd is a study of a continuous authentication scheme. The
goal of the study was to develop a system which could identify the user in as
short time as possible, so that the potential damage an unauthorized user would
be able to do would be minimized. In previous studies it had been noted that
even 100 characters was enough for identifying users with a well designed sys-
tem. The problem with identification with a very short text is that legitimate
users can have temporary typing anomalies — speaking in a phone at the same
time, for example — and the system should not be too sensitive. In the study it

was decided that forcibly logging out the user was too disruptive and the system
only continuously evaluates the likelihood of the user being who he claims to be.
If there is serious discrepancy then the administration can be warned and they
can decide if further action is needed.

In the experiments the authors had promising results when measuring only
latencies between keystrokes and durations of keystrokes and calculating the
averages and variances globally. They had only four persons included in the tests,
but at least between them even these very simple features were good enough for
identification of users.

3.3 Commercial system: BioPassword

BioPassword|[8] is a patented[9] user authentication system by an US company,
BioNet Systems[10]. The company is better known for its Internet filtering prod-
uct NetNanny which can be used to prevent Internet user’s from accessing certain
web-pages.

BioPassword is designed to replace the default log-in system used in Windows
NT/2000/XP operating systems. It is not limited to a single computer, but it
can be used in a Windows network environment where user accounts are stored
centrally. Also a development kit exists which enables easy implementation of
a similar authentication system in other applications. BioPassword works as
follows:

— BioPassword software is installed on the server and the client workstations.

— The user must enroll to use their workstation and the network. Enrollment is
done by typing the username and the password several times, 15 by default.
The biometric template is stored on the server.

— After enrollment, the user can log in normally by typing the username and
the password.

— The system checks the login attempt against the stored template. Only a
user whose typing pattern matches the stored template is allowed to log in.

According to the patent[9] BioPassword is a quite straightforward implemen-
tation of keystroke dynamics systems implemented in many scientific studies [1,
4-7]. It uses both latencies between keystrokes and keystroke durations for veri-
fying users. The patent does not reveal details on the used method for comparing
measurements of a new login attempt to a stored profile. According to the patent
the method stores the profiles of user’s in a way that would be usable for iden-
tifying users continuously. However, continuous verification or identification is
not apparently used in the product.

BioPassword is reviewed in [11] from a functional point of view. BioPassword
was installed on a Windows 2000 server and a workstation. After few hassles
during installation system was working properly and new user accounts could
be added. When logging in for a first time, the new user was asked to write the
username and password combination 15 times. After that, the log-in procedure
worked just like default log-in dialog in Windows. Of course, the most important

part is whether keystroke dynamics add security. The reviewers tested whether
they could log into each others accounts when they knew the username and
the password. With the default security setting they were not able to log in to
other person’s account even after watching the other person writing the login
information and trying to mimic the typing patterns. With a lower security
setting logging to other person’s account succeeded. On the other hand with
the highest security setting even logging to one’s own account was not always
possible. For example, when writing the login information when standing up
instead of sitting down logging in did not always succeed.

In another review([12] also few caveats were found. First, it is possible to by-
pass BioPassword by using RunAs-functionality after logging in normally. When
using RunAs only the username and the password are needed, typing template
is not checked. The RunAs-functionality can be disabled preventing this method
of bypassing BioPassword, though availability of the RunAs-service is useful in
some cases. Second, if 100% compliance is wanted and all the user accounts use
BioPassword, then losing administrator access to the network is a possibility. If
there is only one administrator account and the person using the account, for
example, has an accident and breaks a finger, he won’t be able to log in because
the typing pattern without one finger will be different to the stored template.
The problem is reduced if there are many administrators, which is the normal
case.

On the whole, the reviewers were quite content with the BioPassword system.
It was noticed to be non-obtrusive for the network and the users, it does not need
any special hardware and is reasonably priced. The caveats, however, show that
it is not easy to cover all potential routes for gaining access to user accounts. The
problem would be considerably worse if the environment was more heterogenous,
i.e, several different operating systems are used instead of only Windows. Using
other operating systems than Windows is not currently possible is not currently
possible with BioPassword.

4 Timing attacks on secure communications

When the user’s keystroke dynamics profile is known, it may be possible to guess
what is being written when only the latencies between keystrokes are measured.
If the communication protocol sends every user-written letter separately, then it
is possible to record their timings. Widely used SSH is an exaple of such protocol.
From the timing-data it might be possible to guess which letters were written, or
—in case of cracking passwords — at least reduce the number of possible password
choices to crack with usual brute-force methods. Additionally, instead of using
the keystroke dynamics profile of a specific user, the profile can be exchanged
by a general approximate profile usable for all touch-typists.

Timing analysis of keystrokes and timing attacks against SSH[13] have been
studied in [14]. SSH provides a secure encrypted communications channel be-
tween two hosts. However, there are two weaknesses despite used strong crypto-
graphic algorithms: 1) The transmitted packets are padded to eight byte length,

which reveals approximate size of the original, unencrypted data, and 2) In
interactive mode individual keystrokes are transmitted in separate IP-packets
immediately after the key is pressed. Actually the initial login to a remote site
using SSH does not leak timing information to the network, because the ini-
tial login sends the whole password in one packet. The timing information is
leaked when an established SSH connection is used, for example, to change to
super-user account and writing the super-user’s password.

First, the IP-packets and their timings when writing password have to be
recognized from the network. An example of packet sequence in the network
when using “su” command to change to super-user account is presented in Fig-
ure 4. The problem of noticing important packet sequences is made easier by the
fact that all the normal keystrokes sent to the SSH-server generate a returning
packet because the character is echoed to the screen, but when writing a pass-
word characters are not echoed and consequently packets are send only to one
direction, from the client to the server. This fact makes easier to notice when
the user writes a password.

SSH "Password: " Prompt

»-fime
Server B 20 20 28 N
20 20 20 20[24 2020/ 20| 20
Client time
Host A usu uuu Return vlJllnullulu nill uau Return

Fig. 4. Sequence of packets when using “su” command when changing to super-
user. [14]

Before actually guessing the password based on intervals between characters
there has to be information on what kind of latencies are to be expected between
different keys. The authors studied intervals between many different key com-
binations by dividing key-pairs to several categories based on whether they are
typed with alternating hands and are they both letter or number keys. 142 key
pairs were chosen and latencies when typing them were measured. The results
for different categories are in Figure 5. For example, all key pairs that are written
using both hands had latencies <150 ms. So, if the attacker notices that there
was larger than 150 ms latency between two packets, the keys were probably
pressed using the same hand.

Distributions of intervals were noticed to follow Gaussian distribution, so they
can be modeled with only average and standard deviation. From the latency
information the authors created a Gaussian model for all key pairs. Gaussian
distributions are presented in with the information gain as a function of latency

09+ Two letter keys, aternating hands —
A letter and a number, alternating hands B
Two letters, same hand, different fingers —
Two letters, same finger B

A letter and a number, same hand —

Ratio of character pairs

<100 100-150 150-200 200-250 250-300 > 300

Latency (milliseconds)

Fig. 5. Histogram of latency of key pairs. [14]

between two keystrokes in Figure 6. Information gain is an upper bound for
how much information an attacker can extract from the timing information.
With uniform distribution of characters the information gain is about 1.2 bits
per character pair. Compared to entropy of written English, 0.6-1.3 bits per
character [15], information gained from latency information is significant, even
though for passwords entropy should be considerably higher than for normal
English text.

The relation between latencies and character sequences is modeled as a Hid-
den Markov Model. A Markov Model is a way of describing a stochastic process
where a transition from a state to the next state is dependent only on the current
state. In Hidden Markov Model the current state cannot be directly observed,
only some outputs of the state are observed. Observed outputs can then be used
to infer the prior path of the process. In this case the character pairs are used
as (hidden) states, and the latencies as observed outputs. The Viterbi algorithm
can be used to solve the most likely sequence of states for certain sequence
of observed latencies from the Hidden Markov Model. In this case the latency
distributions of difference characters overlap highly, so the probability that the
most likely sequence is the correct one is very low. Because of that, the au-
thors enhanced the algorithm to provide n most likely sequences. The enhanced
algorithm is called n-Viterbi.

In the experiments 8-character long passwords with random characters were
tried to be guessed by collecting real timing data of a user writing the password.

Information Gain (bits)

“"\‘%“:‘\

200 250 300

150
Latency (milliseconds)

(b)

Fig. 6. (a) Estimated Gaussian distributions for all measured 142 key pairs; (b) Infor-
mation gain as a function of latency between two keystrokes. [14]

As discussed earlier, it is very unlikely that the first sequence suggested by n-
Viterbi algorithm is the correct one. So, the success of the method is measured
by how large part of the total password space — all possible combinations of 8
letter and number characters — had to be tried before finding the correct one. The
results are in Figure 7. The tests indicate that on average the correct password
is found after trying 2.7% of the password space and the median is 1.0%. This
means that compared to a brute force search, which would need to search 50%
of the password space on the average, there is almost a 50-fold decrease. This is
quite significant since testing the whole password space could take months, but
using the described timing attack the time needed would be reduced to days.

The same attack type is applicable for all similar protocols. The authors
propose few countermeasures. First, the problem that writing a password is quite
easy to notice from the network because there are no returning packets could
be fixed by sending dummy packets back. Timing data could still be gathered
but the password would not stand out so obviously from the packet stream.
Alternatively timing data could be messed up by adding random delays when
sending packets, but the delays would have to be in order of several hundred
milli-seconds to be effective. Such large delays would be quite irritating for the
user. Additionally random noise will be canceled out if the attacker can listen
the network for a long time. Another potential fix would be to send dummy
packets continuously, so the attacker would not know which packets contain real
user-written characters. This would waste some bandwidth.

SSH is not the only vulnerable protocol. Almost every type of secure remote
connection protocols sends keystrokes just as the user writes them and the same
security implications apply to all of them. Then again, there are lot of other
data potentially going through, for example, a VPN (Virtual Private Network)
connection besides characters of the pressed keys so recognizing which packets
are relevant keystrokes could be challenging. Recognition of relevant packets is

=
>

= e =
5 S =
T T T

Ranking Percentage of the correct answer in output list (%)
©
:

6
Test Number

Fig. 7. The percentage of the password space tried by Herbivore in 10 tests before
finding the password. [14]

mandatory for measuring timings between them, so if the relevant packets are
hard enough to notice them, then the attack fails.

5 Conclusions and discussion

Keystroke dynamics is a very cheap biometric verification method because there
is no need for any additional hardware besides a normal keyboard. On the other
hand, keystroke dynamics is not a strong biometric identification method, so
it is not applicable to situations where most stringent security measures must
be followed. Using keystroke dynamics makes a username/password-based au-
thentication procedure significantly more secure. Knowing the username and the
password is not enough for logging in to the system, also the typing dynamics of
the real user has to be imitated. The caveats of BioPassword on the other hand
demonstrated that it is not easy to apply such restrictions to all possible routes
for gaining access on user accounts. Keystroke dynamics could also be used in,
for example, cash dispensers when the user writes the PIN-code.

There are some problems in keystroke dynamics based authentication systems
which seem to be often by-passed with brief mention [6], if any, on articles. Many
of the application papers use either normal words or slightly longer phrases than
what is customary with passwords. If the password is used only in settings where
the keystroke dynamics are also checked, for example, there is no chance to by-
pass the keystroke dynamics phase when logging in from a networked computer
elsewhere, then it might be good enough to use a simple word as a password.
Existing words are otherwise too easy to crack by dictionary attacks. Longer
phrases might not be too easy for dictionary or brute force attacks, but they are
problematic with many old (and some new) systems which support only classic 8-

character passwords. In case of using keystroke dynamics with normal passwords
(up to 8-characters long with small and capital letters, numbers and maybe
even punctuation), the user’s writing is often quite erratic at least shortly after
changing to a new password to be very usable in this kind of system. Typing such
password tends to be quite slow before learning to write it ”instinctively”. Thus,
when the system learns user’s typing pattern when the password is changed, the
user writes the password quite slowly and erratically because there are several
hard-to-type characters. After a few weeks there is no more need to stop and
think what character is next so the speed of typing will be much faster. On the
other hand, the commercial system, BioPassword, seems to work reasonably well
according to independent if not very comprehensive tests.

Most of the computers are used in configurations where it is possible for
the user to change peripheral devices, including the keyboard. A serious at-
tacker would be able to create a device which looks like a normal keyboard to a
computer but sends pre-defined key-sequences to the computer. So, if a cracker
knows a username and the password, he might be able to create beforehand a
key-sequence including correct timoigs by studying habits of the real user. Using
the device and the timings the attacker could gain access to the system. Even
this kind of attack would be made significantly harder if a continuous keystroke
dynamics identification was used. However, there does not appear to be such
systems available.

As for attacks on secure communications there are no solutions without draw-
backs: either there must be additional random delays when sending packets which
is annoying to the user or bogus packets are sent which wastes some bandwidth.
SSH was noticed to be easy target for certain cases, one of the reasons being
that it is quite easy to notice from the encrypted data when the user is writing
a password — no packets come back from the server because password characters
are not echoed to the screen. On the other hand, this kind of attack requires
the attacker to know keystroke dynamics of the user whose connection is being
eavesdropped, unless the user uses standard touch-typing system. With standard
touch-typing system the timings can be estimated well enough for purposes of
snooping passwords from other touch-typists.

References

1. Obaidat, M.S., Sadoun, B.: Verification of computer users using keystroke dynam-
ics. IEEE Transactions on Systems, Man and Cybernetics 27 (1997) 261-269

2. Miller, B.: Vital signs of identity. IEEE Spectrum 31 (1994) 22-30

3. Shepherd, S.J.: Continuous authentication by analysis of keyboard typing char-
acteristics. In: Kuropean Convention in Security and Detection, Brighton, UK,
Bradford University (1995) 111-114

4. Bleha, S., Slivinsky, C., Hussien, B.: Computer-access security systems using
keystroke dynamics. IEEE Transactions on Pattern Analysis and Machine In-
telligence 12 (1990) 1217-1222

5. Lin, D.T.: Computer-access authentication with neural network based keystroke
identity verification. In: International Conference on Neural Networks, Houston,
Texas, USA (1997) 174-178

10.

11.

12.

13.

14.

15.

Coltell, O., Badfa, J.M., Torres, G.: Biometric identification system based on
keyboard filtering. In: IEEE International Carnahan Conference on Security Tech-
nology, Madrid, Spain (1999) 203-209

Haider, S., Abbas, A., Zaidi, A.K.: A multi-technique approach for user identifi-
cation through keystroke dynamics. In: IEEE Internation Conference on Systems,
Man, and Cybernetics. Volume 2., Nashville, TN. USA (2000) 1336-1341
BioPassword. [Website] (retrieved October 23, 2003) From:
http://www.biopassword.com/.

Zilberman, A.G.: Security method and apparatus employing authentication by
keystroke dynamics (1998) United States Patent 6,442,692.

BioNet Systems, LLC. [Website] (retrieved October 23, 2003) From:
http://www.bionetsystems.com/.

Altman, A.: Review of BioPassword 4.5. [HTML-document] (retrieved October
23, 2003) From: http://www.biometritech.com/features/022502review.htm.
Bragg, R.: Biometric security products. [HTML-document] (retrieved October 24,
2003) From: http://www.mcpmag.com/Features/article.asp?EditorialsID=270.
Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T., Lehtinen, S.: SSH Protocol
Architechture. TETF Internet-Draft. (2003) From: http://www.ietf.org/internet-
drafts/draft-ietf-secsh-architecture-14.txt.

Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks
on SSH. In: 10th USENIX Security Symposium, Washington, D.C., USA (2001)
337-352

Shannon, C.: Prediction and entropy of printed english. Bell Systems Technical
Journal 30 (1951) 50-64

